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Rotating unstable Langevin-type dynamics: Linear and nonlinear mean passage time distributions

J. I. Jiménez-Aquino* and M. Romero-Bastida
Departamento de Fı´sica, Universidad Auto´noma Metropolitana Iztapalapa, Apartado Postal 55-534, Me´xico,

Distrito Federal 09340, Mexico
~Received 29 April 2002; revised manuscript received 23 August 2002; published 6 December 2002!

To characterize the decay process of linear rotating unstable Langevin-type dynamics in the presence of
constant external force, through the mean passage time distribution, two theoretical descriptions are proposed:
one is called the Quasideterministic~QD! approach described in the limit of long times, and the other approach
is formulated for not so long times. Both theories are matrix based and formulated in twox andy dynamical
representations,y being the transformed space of coordinates by means of a time-dependent rotation matrix. In
the y dynamical representation the noise as well as the external force are rotational. The QD approach is
studied when the dynamics is not influenced by the external force and when it is influenced by it. In the
absence of this force, the theory is given forn variables and leads to the same results as those obtained in the
characterization of nonrotating unstable systems; a fact that is better understood in the space of coordinatesy.
In the presence of the external force, the characterization is given for two variables and it is only valid for weak
amplitude forces. For large amplitudes, the dynamics is almost dominated by the deterministic rotational
evolution; then the QD approach is no longer valid and therefore the other approach is required. The theory in
this case is general and verified for systems of two and three variables. In the case of two variables we study
a laser system and use the experimental data of this system to compare with both theoretical and simulation
results. In the case of three variables, the theory foresees application in other fields, for instance, in plasma
physics. We also study the time characterization of the nonlinear rotating unstable systems and show in general
that the nonlinear correction to the linear case is a quantity evaluated in the deterministic limit. The same laser
system studied in the linear case is used as a prototype model.

DOI: 10.1103/PhysRevE.66.061101 PACS number~s!: 05.40.2a
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I. INTRODUCTION

In a recent communication@1# we emphasized that sto
chastic differential equations have become a useful too
the description of a great variety of physical systems
which the presence of fluctuations plays a fundamental r
During 1970s and 1980s the study of transient relaxation
unstable states or in general, of any initial condition far fro
the steady state, was proposed as an interesting topic in
study of nonequilibrium phenomena@2#. The decay of un-
stable steady states has been studied in various specific
texts such as dynamics of phase transitions@3,4#, hydrody-
namical instabilities@5#, spinodal descomposition@6#, the
switch-on process in lasers@7#, relaxation of chemical insta
bilities @8#, and dynamics of liquid crystals@9#. Among the
various methods proposed to study the decay process o
stable steady states, we find a variety of them for instan
the time scales methods, called the mean passage
~MPT! distribution and nonlinear relaxation times~NLRT!;
both theoretically developed in the context of Langevin-ty
dynamics @10# or Fokker-Planck equation@11#. It is well
known that the PT distribution defines a set of random tim
t at which the system reaches a given reference value. In
Langevin-type description, this time scale relies mainly up
a theory called the Quasideterministic~QD! approach devel-
oped by De Pascualeet al. @10#, and immediately after ex
tended to the study of the time characterization of
switch-on process in lasers@10,12,13#. In all of those refer-
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ences, it has been established that the QD approach is a
approximation because it gives the precise physical pic
about the mechanism responsible for the relaxation proc
that is, it considers the fluctuations around the initial unsta
state as the driving mechanism to initiate such a decay
cess. It is only at this stage that the fluctuations are imp
tant, in such a way that after this stochastic beginning i
mainly deterministic. In other words, the fluctuations chan
the initial state of the system around the unstable state
then the deterministic motion drives the system out from t
state. The QD approach is basically related with the Lagev
type equation whose associated systematic force is der
from a potential. This type of dynamics related to the Q
approach will be here referred to as standard formulation
quasideterministic~SFQD! approach. The NLRT method i
associated with general processes of certain quantities,
as the moments of the relevant stochastic variables, wh
relax from arbitrary initial conditions to the correspondin
stable steady states. Its connection with the QD appro
was studied in Ref.@16#.

In the early 1990s it was proposed by Vemuri and R
@13# that very weak optical signals can be detected via
transient dynamics of a laser using the laser as a superre
erative receiver. The numerical@13# and experimental@14#
results were successfully sustained by the MPT distribut
@12# and NLRT@15# through the SFQD approach. Later De
lunde et al. @17# proposed an alternative passage tim
method, to efficiently detect large optical signals in a las
showing in this case the oscillatory behavior of the syste
In the following year the detection of weak optical signals
the same laser system was studied by the same authors
©2002 The American Physical Society01-1
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ing into account the phase fluctuations of the injected sign
@18#. However, nothing about the oscillatory behavior of t
system was discussed, neither why the SFQD appro
works well in the time characterization of such a system.
we have mentioned, an amount of works cited above r
upon a Langevin-type equation whose associated system
force is derived from a potential, except those studied
Refs.@17,18# where the proposed Langevin-type equation
rotational. Only in Ref.@17# the oscillatory behavior of the
laser system was characterized, but a general descriptio
rotating unstable dynamics was not properly formulated
was studied in terms of complex numbers. Inspired in th
last works, a general time characterization of rotating
stable Langevin-type dynamics in presence of large am
tude of a constant external force has recently been prop
in Ref. @1#, in which such laser system is just a particu
case. The theory generalizes the procedure given in
@19#, where the study was made only in the case of t
variables. By rotating unstable systems we mean those w
once leaving the initial unstable state, describe practic
deterministic rotational trajectories to reach the stable ste
state or some approximation of it.

Our aim in this paper is to study the decay process of
rotating unstable Langevin-type dynamics in the absence
in the presence of a constant external force, using the M
distribution in two limiting cases. One is the long time lim
where the QD approach is the appropriate description.
formulated in a matrix scheme and also generalizes that s
ied in Ref.@20#, in which the time characterization is give
for those particular systems of two and three variables.
other limiting case is for not so large times where the Q
approach is no longer valid, and the theoretical descrip
will be essentially the same as given in Ref.@1#. Here we will
show, for systems of two variables, that as time goes to
finity the results coincide with the QD description. Both th
oretical descriptions are studied in twox and y dynamical
representations,y being the transformated space of coor
nates in which the Langevin dynamics introduce a differ
concept of rotating external and internal~noise! forces,
through a time-dependent rotation matrix. The QD appro
is studied when the Langevin-type dynamics is not affec
by the external force and when it is subject to the influen
of this force. In the absence of the external force, the th
retical description can be made for a number ofn physical
variables, and the results for the MPT distribution as well
the variance coincide with those obtained with the SFQ
approach. This fact has a better explanation in the tra
formed space of coordinatesy, where we can understan
why the matrix QD approach works well in the dynamic
characterization of rotating systems. In the presence of
external force, the QD approach is studied only for tho
rotational systems of two variables and the correspond
results will be compared with the results of Ref.@12#. As a
consequence of the external force two limiting cases in thy
space can be appreciated in the dynamical evolution of
system. One is the case of a weak amplitude external fo
which means that the amplitude is less or of the same o
than the noise intensity; and the other is the opposite c
i.e., the limit of large amplitude external force. We show th
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the QD approach is valid only in the limit of weak extern
force, in which no rotational effect can be appreciated in
stochastic trajectories of the system. In the opposite c
those rotational effects arise due to the dominant contribu
of the external force, but the QD is no longer valid to ch
acterize the rotating system. In this case the trajectories
have practically as deterministic. Those rotational effects
visualized for not so large times and therefore another
proach must be proposed. The theory in this case is q
general; systems of two and three variables being just
ticular examples. In the study of the laser system we use
MPT and the same criteria proposed in Ref.@17# for the
detection bandwidth of the large injected external field.
the other hand, to characterize the nonlinear rotating unst
Langevin-type dynamics through the MPT we propose
strategy which takes into account that the relevant contri
tion in the time characterization comes from the linear co
tribution, and therefore the nonlinear contributions can
evaluated in the deterministic limit of approximation, whic
is equivalent to neglect the effects of fluctuations alrea
considered at the initiation times. Two Appendices are
cluded in order to justify the calculations. We show in A
pendix A that the transformation eWt is a time-dependen
rotation matrix, whereW is an antisymmetric matrix; finally,
we show in Appendix B how is possible to transform a
333 antisymmetric matrix into a 333 antisymmetric matrix
very similar to the corresponding case of two variables.
hope that the present material may serve to stimulate co
sponding experiments or theoretical studies in other fie
for instance, the dynamics of particles in a plasma.

II. THE MPT AND QD APPROACH FOR ROTATING
UNSTABLE SYSTEMS

Our primary interest is in a rotating unstable Langev
type equation for the column vectorx of n variables in the
presence of a constant external force which can in genera
written as

ẋ5ax1Wx1n~r !x1fe1z~ t !, ~1!

wherea is real and positive, the matrixW is a real antisym-
metric matrix which satisfies,W

T
52W and W

T
its trans-

posed, the scalar functionn(r ) accounts for nonlinear con
tributions due to the fact thatr[x25x

T
x, r being the square

of the norm of the vector,fe is the external force with con
stant elementsf ei

and z(t) is the fluctuating force whose

elementsj i(t) satisfy the property of Gaussian white noi
with zero mean value and correlation function

^j i~ t !j j~ t8!&52Qi j d i j d~ t2t8!, ~2!

whereQi j is the matrix representing the noise intensity. T
linear systematic forcefs5ax1Wx is not in general derived
from a potential, because“3fs5“3WxÞ0 and therefore
the rotating character of the dynamics~1! is due to the prop-
erties of matrixW.
1-2
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A. The absence of external force

Let us first study the decay process of the dynamics~1! in
the absence of the external force, using the mean pas
time distribution and QD approach. As we know, this a
proach starts in this case with the following dynamics

ẋ5ax1Wx1z~ t !, ~3!

whose solution, in the case of zero initial conditionxi(0)
50, reads

xi~ t !5eatRei j ~ t !hj~ t !, ~4!

where the factor eWt has been in general substituted by
time-dependent orthogonal rotation matrix according to A
pendix A; that is eWt5Re(t) which satisfies the propert
Re

T
(t)5Re

21
(t) and therefore e2Wt5Re21(t), and

hj~ t !5E
0

t

e2as Rek j~s!jk~s!ds. ~5!

The QD approach assumes that, in the long time limit,
stochastic processhj (t) plays the role of an effective initia
condition, sincehj (`) behaves like a Gaussian random va
able. This is so, because for small values of noisejk(t) we
can guarantee that

lim
t→`

dhj~ t !

dt
5 lim

t→`

e2atRei j ~ t ! jk~ t !→0, ~6!

and thereforehj (`)5hj is then a Gaussian random variab
In this long time limit the process~4! becomes a quasidete
ministic one which in terms of the normr (t) reads as

r ~ t !5xTx5h2 e2at, ~7!

with h2[h
T
h5h

1

21•••1hn
2 . The random passage time r

quired by the system to reach the prescribed reference v
R2 will be given by

t5
1

2a
lnS R2

h2 D . ~8!

Thus, the statistics of the passage times can be obta
through the statistics of the random variableh through the
transformation~8!. The statistical moments of the PT distr
bution can be obtained from the generating function defi
asG(2al)5^e2alt&. In this case

G~2al!5 K S R2

h2 D 2lL , ~9!

which clearly requires of the marginal probability dens
P(h). This probability density must be calculated from t
general Gaussian distribution
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, . . . ,hn!

[C expF2
1

2 (
i , j 51

n

~s21! i j ~hi2^hi&!~hj2^hj&!G ,

~10!

whereC[1/@(2p)n/2(Dets i j )
1/2#. If the matrix s i j is sym-

metric s i j 5s j i and positive definite then the inverse matr
(s21) i j 5(s21) j i and its square root (s1/2) i j 5(s1/2) j i , as
well as its inverse square root (s21/2) i j 5(s21/2) j i exist@23#.

The joint probability density given by Eq.~10! requires
the variance (i 5 j ) and covariance (iÞ j ) of matrix s i j de-
fined as

s i j [^hihj&2^hi&^hj&. ~11!

We can check from Eq.~5! that in the long time limit
^hi(`)&5^hj&50, and according to orthogonality propertie
of the rotation matrix, the correlation function reduces to

^hihj&5
Q

a
d i j , ~12!

only if the elements of the matrixQkk5Q. Therefore fori
Þ j the set of random variableshi are independent and the
the matrixs i j is diagonal with elementss i i 5s25Q/a. Un-
der these conditions the joint probability density~10! reduces
to

P~h
1
, . . . ,hn!5

1

~2ps2!n/2
e2a2(h

1
21•••1hn

2), ~13!

with a2[1/2s2. The marginal probability densityP(h) is
calculated using the Jacobian transformationdV5J(u)du
beingu5(h,u

2
, . . . ,un) the new space of variables. In ou

casedV5C
1

hn21dh and therefore the marginal probabilit
density will be

P~h!5
2an

G~n/2!
hn21 e2a2h2

, ~14!

so that the generating function will be given by

G~2al!5~a2R2!2l

GS l1
n

2D
G~n/2!

. ~15!

In the limit of small noise intensity, the MPT distribution i

^2at&5F2
dG~2al!

dl G
l50

5 ln~a2R2!2c~n/2!, ~16!

wherec(x) is the digamma function@24#. The variance of
the passage time distribution defined as the aver
^(Dt)2&5^t2&2^t&2 can be calculated in a similar way from
the generating function, the result being

^~2aDt !2&5c8~n/2!. ~17!
1-3
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As we can see, both the MPT distribution and the varia
do not contain the rotational effects inherent to the dynam
~3!, and therefore they seem not to be appropriated to
scribe the rotating system. Another important point we wo
like to underline is that the time characterization of dynam
~3! without the contributionWx, can be made using th
SFQD approach@10#, and leads exactly to the same results
those given by Eqs.~16! and ~17!. Under these circum-
stances, the two following and natural questions arise: on
why the matrix scheme of QD approach does not prope
describe, through the results~16! and ~17!, the deterministic
rotation associated with the dynamics~3!, and therefore,
where are those rotational effects in the theoretical desc
tion? The second one is, why the time scale~16! and the
variance~17! are the same as those obtained in the ti
characterization of dynamics~3! without the termWx, using
the SFQD approach?

We get the answer of the two questions if we make in
dynamics~1! the change of variabley5e2Wtx, such that in
the transformed space of coordinates we get a different
tating unstable Langevin-type dynamics given by

ẏ5ay1n~r !y1Re21~ t !fe1Re21~ t !z~ t !, ~18!

where the scalar functionn(r ) remains the same functio
becauser is invariant, i.e.,r[x

T
x5y

T
y. As a result of this

transformation, the nonconservative part of the linear s
tematic force of Eq.~1! has been removed and the rotation
effects of matrixW have been associated with the presen
of both external and internal~noise! forces, and therefore th
external force as well as the internal noise are rotational.
clear that the set of variablesy are decoupled and the linea
systematic force is evidently derived from a potential.

It is now in this y space of coordinates where we c
understand what happens with the rotation and why the
approach is appropriated to describe the system. First,
will prove that the dynamical characterization of the rotati
system given above in thex representation, will be the sam
as in they representation. Again we start with the line
approximation of Eq.~18! in the absence of the rotating ex
ternal force so that

ẏ5ay1Re21~ t !z~ t !, ~19!

which is clearly the transformation iny space of the dynam
ics ~3!. Its solution for zero initial conditionyj (0)50 is then

yj~ t !5eathj~ t !, ~20!

where

hj~ t !5E
0

t

e2as Rek j~s!jk~s!ds. ~21!

This process is exactly the same as that given in Eq.~5! and
therefore it satisfies the same conditions imposed by the
approach, namely,hj (`)5hj is a Gaussian random variabl
Also the norm of the solution~20! satisfies the quasidete
ministic process
06110
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r ~ t !5yTy5h2 e2at, ~22!

with h2[h
T
h5h

1

21•••1hn
2 . The random passage time re

quired by the system to reach the prescribed reference v
R2 is also the same as for Eq.~8!. Therefore, the statistica
moments of this random passage time must be calculate
the same method given above. Therefore, in the transfor
space of coordinatesy, the MPT distribution and the varianc
are given respectively by

^2at&5 ln~a2R2!2c~n/2! ~23!

and

^~2aDt !2&5c8~n/2!, ~24!

which are exactly the same as that given by Eqs.~16! and
~17!, respectively. Once we have proved that the charac
ization is the same in both dynamical representations, we
proceed to answer the questions posed before.

The answer to the first question is because the rota
associated with the systematic force in thex scheme has bee
removed and incorporated as an internal noise in they
scheme, due to the change of variable. Therefore, the
approach is better understood in the transformed spac
coordinates because it describes the dynamical characte
tion of rotating systems not in the systematic force, but in
internal noise according to Eq.~19!. In the two- and three-
dimensional space of coordinates, the stochastic trajecto
of the dynamics~19! represent, for small noise intensit
practically a set of straight lines leaving from the origin
coordinates at random direction due to rotating characte
noise. This fact will be verified below by simulation result
only for the case of two variables.

For the second question we have the following: the SF
approach relies upon the fact that the nonrotating unsta
Langevin-type dynamics turns out to be identical to th
given by Eq.~3! without the termWx, and in this case it is
very similar to that given by Eq.~19! except for the rotating
internal noise of this equation. The characterization of
dynamics~19! leads to the same results as that obtained
the SFQD approach only if the noise satisfies the propert
a d correlated function, a fact that has been corroborated
the correlation function given by Eq.~12!. Also such a simi-
larity between both dynamics will be verified below by sim
lation results in the case of two variables.

Thus, for a better visualization of the problem, let us co
sider a rotating system of two variables and show its dyna
cal behavior in thex and y space of coordinates. In Fig. 1
we show only one stochastic trajectory of the dynamics~3!
in the (x

1
,x

2
) plane, which corresponds a circular spiral lea

ing from the origin of coordinates to reach the circle of r
diusR. In Fig. 2 three stochastic trajectories of the dynam
~19! are shown in the (y

1
,y

2
) plane, which represent pract

cally straight lines emerging from the origin of coordinat
to reach the same circle of radiusR, at random directions due
to rotating noise. In Fig. 3, we show three stochastic traj
tories of the dynamics~3! without the termWx. In this case,
the trajectories are also practically straight lines and v
1-4
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similar to those shown in Fig. 2. The trajectories eme
from the origin also at random directions due to noise.
these three cases the MPT distribution and the variance
n52, are obviously

^2at&5 ln~a2R2!2c~1!, ~25!

and

FIG. 1. Dynamical evolution of one trajectory of the syste
given by Eq.~3! for two variables in the (x1 ,x2) space for values
a50.5, v56.0, R51, andQ51023.

FIG. 2. Linear dynamical evolution of three trajectories of t
system given by Eq.~19! for two variables in the (y1 ,y2) space for
valuesa50.5, v56.0, R51.0, andQ51023.
06110
e
n
or

^~2aDt !2&5c8~1!. ~26!

The answer to the second question can also be well vis
ized in Figs. 2 and 3.

B. The presence of external force

In this section we will study how the presence of t
external force can affect the time characterization of the
ear dynamics given in the preceding section. In this case
now have

ẋ5ax1Wx1fe1z~ t ! ~27!

or in its transformed space of coordinates

ẏ5ay1Re21~ t !fe1Re21~ t !z~ t !. ~28!

The solution of both Eqs.~27! and ~28! for zero initial con-
dition xi(0)5yj (0)50 are then

xi~ t !5eatRei j ~ t !hj~ t !, yj~ t !5eathj~ t !, ~29!

where now

hj~ t !5E
0

t

e2as Rek j~s!@ f ek
1jk~s!#ds. ~30!

Again, in the long time limit, QD approach implies that

lim
t→`

dhj~ t !

dt
5 lim

t→`

e2atRei j ~ t !@ f ek
1jk~ t !#→0, ~31!

and thereforehj (`)5hj is then a Gaussian random variabl
In this limit, both solutions of Eq.~29! also satisfy that,

FIG. 3. Linear dynamical evolution of three trajectories of t
system given by Eq.~3! for two variables in the (x1 ,x2) space
without the termWx.
1-5
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r ~ t !5xTx5yTy5h2 e2at, ~32!

with h2[h
T
h5h

1

21•••1hn
2 . The random passage time r

quired by the system to reach the prescribed reference v
R2 reads again

t5
1

2a
lnS R2

h2 D . ~33!

The statistical moments of this passage time can be ca
lated from the generating function given by Eq.~9!. The
marginal probability density needs of the joint probabil
density ~10! and therefore of the properties of matrixs i j
defined in Eq.~11!. According to Eq.~30! we see in the long
time limit that

^hj&5E
0

`

e2as Rek j~s! f ek
ds. ~34!

It can also be shown that the correlation function of the va
ablehi is

^hihj&5^hi&^hj&1
Q

a
d i j , ~35!

only if Qkk5Q. Again the matrixs i j 5(Q/a)d i j , the vari-
ableshi are independent ands i j is diagonal with elements
s i i 5s25Q/a. In this case the joint probability density~10!
reduces to

P~h
1
, . . . ,hn!5

1

~2ps2!n/2
expF2a2(

i 51

n

~h
i
1^hi&!2G ,

~36!

with a2[1/2s2. In the space of variables u
5(h,u

1
, . . . ,un) the joint probability density is given by

P~h,u
1
, . . . ,un!dV5C

2
e2a2(h21q222qTh)dV, ~37!

whereq25^h1&
21•••1^hn&

2 is the square modulus of th
column vectorq with elementŝ hi&. Hence,P(h) is calcu-
lated knowing the Jacobian of the transformation and in
grating over the rest of the variables (u

1
, . . . ,un).

From the above formalism we can get explicit results
rotating unstable systems of two variables. In this case
antisymmetric matrixW and its corresponding rotation ma
trix Re(t) are given by

W5S 0 v

2v 0 D , Re~ t !5S cosvt sinvt

2sinvt cosvt D .

~38!

The mean values

^h1&5
f e1

a

a21v2
2

f e2
v

a21v2
,

06110
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^h2&5
f e1

v

a21v2
1

f e2
a

a21v2
, ~39!

and therefore the coupling parameter between the exte
force and rotation parameterq25^h1&

21^h2&
2, will be

given by

q25
ufeu2

a21v2
, ~40!

with ufeu25 f e1

2 1 f e2

2 the square modulus of vectorfe . It can

be proved that the marginal probability density is given b

P~h!52a2 hI0~2a2qh!e2a2(h21q2), ~41!

whereI 0(x) is the modified Bessel function of zeroth ord
@24#. The moments generating function is in this case

G~2al!5~a2R2!2l e2b2

(
m50

`
G~m1l11!

~m! !2 b2m

5G0~2al! e2b2
M ~l11,1,b2!, ~42!

whereG0(2al)5(a2R2)2lG(l11) is the generating func
tion in the absence of the external force,M (a,b,z) is the
Kummer confluent hypergeometric function@24#, and the pa-
rameter b25a2q25aufeu2/2Q(a21v2), which is propor-
tional to rate ufeu2/Q. Thus, the MPT distribution can b
calculated with the help of Eq.~41!; yielding that

^2at&5 ln~a2R2!2e2b2

(
m50

`
b2m

m!
c~m11!, ~43!

which can be reduced to

^2at&5^2at&
0
1 (

m51

`
~21!mb2m

mm!
, ~44!

with ^2at&
0
5 ln(a2R2)2c(1) the MPT in the absence of th

external force which means thatb50. The variance has the
following expression

^~2aDt !2&5e2b2

(
m50

`
b2m

m!
@c8~m11!1c2~m11!#

2Fe2b2

(
m50

`
b2m

m!
c~m11!G2

, ~45!

or using the other alternative expression of Eq.~42! in terms
of the hypergeometric function, it may be also written as

^~2aDt !2&5c8~1!12 (
m52

` S (
k51

m21
1

kD ~21!mb2m

mm!

2F (
m51

`
~21!mb2m

mm! G2

, ~46!
1-6
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which is clearly reduced to Eq.~26! in the absence of exter
nal force. The series given in Eqs.~44! and~46! are conver-
gent for allb. This allows us to analyze two limiting case
for this parameter, namelyb<1 and b@1, and check in
which case the QD approach must be valid. The caseb<1
corresponds to that situation for which the amplitude of
external force is less or of the same order than the n
intensity whereasb@1 is the opposite case, that is the am
plitude of the external force dominates over the intensity
noise; in this case noise plays no important role and there
the dynamics will be practically deterministic.

As we mentioned in the preceding section, the QD
proach is better understood in the transformed space of
ordinatesy, so that we will first look at the stochastic traje
tories described by dynamics~28! in the case of two
variables and in both limiting cases. Forb<1, displayed in
Fig. 4, three stochastic trajectories for valuesufeu5Q
50.001, a53.0, v56.0, andR51.0. In this case the tra
jectories represent practically straight lines leaving from
origin of coordinates in the (y

1
,y

2
) plane at random direc

tions, to reach the circle of radiusR. The rotation around the
origin is due to rotating noise and no rotational effects of
external force can be appreciated because the amplitud
the external force is less or of the same order than the in
nal noise. This behavior is very similar as that shown in Fi
2 and 3. Therefore, for very small values ofb we can ap-
proximate the MPT and the variance as

^2at&5^2at&
0
2b21

b4

4
, ~47!

and

FIG. 4. Dynamical evolution of three trajectories of the syst
described by Eq.~28! for the case of two variables in the (y1 ,y2)
space for valuesa53.0, v56.0, R51.0, andufeu5Q51023.
06110
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^~2aDt !2&5c8~1!2
b4

2
. ~48!

These results corresponds to the case for which the de
process is dominated by noise. In Fig. 5 we show the ti
scale described by Eq.~47! compared to numerical simula
tion results, with excellent agreement.

In the opposite limitb@1, we show in Fig. 6, three sto
chastic trajectories with the same valuesa53.0, v56.0, R
51.0, but nowufeu51.0 andQ50.001. It is clear in this
case that both rotational effects can be appreciated in su
way that the trajectories emerge from the origin of coor
nates (y

1
,y

2
), forming ‘‘loops’’ to reach the circle of radius

FIG. 5. Comparison between the time scale~47! and numerical
simulation for the caseufeu5Q, a53.0, v56.0, andR51.0. The
simulation results correspond toQ51021, Q51022, Q51023,
Q51024.

FIG. 6. Dynamical evolution of three trajectories of the syste
described by Eq.~28! for two variables in the (y1 ,y2) space for
valuesa53.0, v56.0, R51.0, ufeu51.0, andQ51023.
1-7
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R also at random directions. We can see that noise play
important role and therefore the dynamics is dominated
deterministic evolution.

For this case we use the identity(m51
` @(21)mxm#/mm!

52@E1(x)1g1 ln x#, whereE1(x) is the exponential func-
tion and g the Euler constant such thatc(1)52g @24#.
Hence, the MPT can be written as

^2at&5^2at&
0
2@E1~x!1g1 ln x#, ~49!

and therefore, for largeb we get the approximation

^2at&5 lnFR2~a21v2!

ufeu2
G2

e2b2

b2
' lnFR2~a21v2!

ufeu2
G ,

~50!

where ln@R2(a21v2)/ufeu2# is the deterministic relaxation
time. The variance vanishes as

^~2aDt !2&'
4

b2 . ~51!

We remark that forb@1 the theoretical results given b
Eqs.~50! and~51! do not describe the oscillatory behavior
the system as shown in Fig. 6. In other words, the QD
proach is no longer valid forb@1; it is valid only if b
<1, in which the rotational effects are practically neglect
In the following section we will draw and compare the r
sults given by Eqs.~50! and ~51! with the corresponding
results which arise from the characterization of the same
ser system studied in Ref.@17#. The theoretical results hav
been obtained simultaneously in both thex andy dynamical
representations.

To conclude this section we would like to comment that
Refs. @12,18#, the PT distribution and the SFQD approa
were used to study the detection of weak optical signals
the transient dynamics of a laser. Equations~47!, ~48!, ~50!,
and~51! are exactly the same as those reported in Ref.@12#.
It is important to remark that in those references the theo
ical description of the SFQD approach was given in thex
dynamical representation and nothing about the rotatio
behavior of the laser system was mentioned, neither why
SFQD approach works well in the description of such a la
system. With the formulation of the QD matrix approach
the space of coordinatesy, we can now understand why th
oscillatory behavior of that laser system is almost negligi
for weak optical signals.

III. THE MPT FOR ROTATING UNSTABLE SYSTEMS

In this section we will study how to characterize, in th
linear approximation, the decay process of the rotating
stable Langevin-type dynamics proposed in the preced
section. The proposal will be given in quite a general w
The linear solution of Eqs.~1! and ~18! assumingxi(0)
5yi(0)50, can be written as

xi~ t !5eat Rei j ~ t !hj~ t !, yj~ t !5eat hj~ t !, ~52!

with
06110
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.
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hj~ t !5E
0

t

e2as Rek j~s!@ f ek
1jk~s!#ds. ~53!

The dynamical characterization of the system will
given in terms of the square of the norm of vectorx andy,
which satisfies

r ~ t !5h2~ t ! e2at, ~54!

whereh2(t)[h
T
(t)h(t). It has been shown in Sec. II that, i

the long time limit such thatt@1/2a, the process~54! is
dominated by the exponential term and thenh(`) plays the
role of an effective initial condition which implies that th
process~54! becomes a quasideterministic one. For the
long times, we have seen that for large values of the am
tude of the external force the QD approach is not an app
priate proposal to characterize the rotational evolution of
system. To describe such rotational effects of the dynam
~27! or ~28!, we must study the decay process of such s
tems for not so long times following the proposal of Ref.@1#.
This means that the random passage time at which the
tem reaches a reference valueR2 can be calculated from Eq
~54!, but it is not an easy task, because the right hand s
also depends on time. However, we profit from the statist
properties of the processh(t), which in general are given by

^hi~ t !&5E
0

t

e2as Reki~s! f ek
ds ~55!

and

^hi~ t !hj~ t !&5^hi~ t !&^hj~ t !&1
Q

a
~12e22at! d i j . ~56!

where we have also applied the orthogonality of mat
Re(t) and assumed thatQkk5Q.

To solve the problem, we propose that

hi~ t !5^hi~ t !&1g~ t ! h i , ~57!

whereg2(t)5(12e22at) andh i is a Gaussian random var
able with zero mean value and variance^h ih j&5(Q/a)d i j .
The process~57! is quite compatible with Eqs.~55! and~56!.
If we assume that the amplitude of the external force do
nates over the intensity of internal noise, we can say that
first term of the right hand side of Eq.~57! is the dominant
contribution, and therefore we can perform a series exp
sion up to first order in powers ofh i , such that

t5t
P
2

g~ t
P
!

a (
i

^hi~ t
P
!&

u^h~ t
P
!&u2

h i1O~h i
2!, ~58!

whereu^h(t
P
)&u25( i^hi(tP

)&2 and t
P

is the zeroth order ap
proximation given by

t
P
5

1

2a
lnS R2

u^h~ t
P
!&u2D . ~59!
1-8
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The passage time distribution is then

^t&5t
P
5

1

2a
lnS R2

u^h~ t
P
!&u2D , ~60!

and the variance defined in Sec. II will be

^~Dt !2&5
Qg2~ t

P
!

a3 (
i

^hi~ t
P
!&2

u^h~ t
P
!&u4

. ~61!

Clearly, the PTD is only dominated by the determinis
approximation, whereas the variance contains the coop
tive effect of both internal noise and external force throu
the intensityQ and the mean valuêhi(tP

)&, respectively.

A. Rotating unstable systems of two variables

In this case the matricesW and Re(t) are the same a
those in Eq.~38! and therefore“3fs522v k̂, which is a
vector perpendicular to the rotation plane.

To calculate the mean value of each component^hi(t)&
we can assume without loss of generality thatf e1

5 f e2

5ufeu/A2, and define

z~ t ![
ufeu

2A2l2

~12e2l2 t!,

z* ~ t ![
ufeu

2A2l1

~12e2l1 t!, ~62!

where the asterisk stands for the complex conjugate, w
l15a1 iv andl25a2 iv and6 iv are the eigenvalues o
matrix W. In this case we get

^h1~ t !&5z~ t !1z* ~ t !1 i@z~ t !2z* ~ t !#,

^h2~ t !&5z~ t !1z* ~ t !2 i@z~ t !2z* ~ t !#, ~63!

and so

u^h~ t !&u252z~ t !z* ~ t !5
ufeu2

~a21v2!
@11f~ t !#, ~64!

wheref(t)5@e22at22e2atcosvt#. The passage time distri
bution is then given by

t
P
5t02

1

2a
ln@11f~ t

P
!#, ~65!

where

t05
1

2a
lnFR2~a21v2!

ufeu2
G . ~66!

For large amplitudes of the external force such that the
rameterb25aufeu2/2Q(a21v2)@1, the variance is given
by
06110
ra-
h

th

a-

^~Dt !2&5
g2~ t

P
!

a2b2@11f~ t
P
!#

F11
f8~ t

P
!

2a@11f~ t
P
!#G22

.

~67!

We observe that the oscillatory behavior of the MPT~65! and
the variance~67! are due to the functionf(t). As time goes
to infinity, the oscillatory behavior goes to zero and therefo
t

P
;t0 and^(Dt)2&;1/b2 which correspond to the determin

istic limit given by Eqs.~50! and ~51! as required by QD
approach. Therefore, for not very long times, the time sc
~65! and its variance~67! must be the appropriate quantitie
to characterize the rotating evolution of the system. The ti
scalet

P
as well as the variance can be calculated through

iterative procedure

t
P

(0)5t0 , t
P

(n11)5t02
1

2a
ln@11f~ t

P

(n)!#. ~68!

The proposal can be applied to study the decay proces
the same laser system as that studied in Ref.@17#, where the
switch-on process of a laser under the influence of a la
injected signal has been studied in terms of complex nu
bers. For this system, the Langevin-type equation for
complex dimensionless laser fieldE5E11 iE2 of a single-
mode reads

Ė5~2k1 i f !E1
F

11
A

F
I

E1keEe1j~ t !, ~69!

where j(t) is the spontaneous emission Gaussian noise
zero mean and correlation

^j~ t !j* ~ t8!&52ed~ t2t8!, ~70!

k is the cavity decay rate in s21, f is the detuning paramete
between the laser field and the injected signal,F is the gain
parameter (s21), A the saturation parameter (s21), I 5uEu2

5E1
21E2

2 the intensity of the laser field,ke is the coupling
parameter between the injection fieldEe and the laser filed,
andj(t) is the internal noise with strengthe(s21). Both ke
andEe are taken as real numbers.

Since the reference value of the laser intensity isI r
50.02I st , whereI st5(F2k)/A is the steady-state value,
linear solution will be a good approximation. The matr
scheme of the linear approximation of Eq.~69! can be for-
mulated in terms of the real and imaginary parts of the
mensionless complex electric field. The resulting equatio
quite compatible with Eq.~1! in the case of two variables i
the element of the matrixW equals the detuning paramete
that is v5 f . The real part of the external field isf e1

51/A2ufeu5keEe whereas the imaginary partf e2
50, the

reference valueI r5R2, the intensity of noiseQ5e/2, and
the parametera5F2k. In this caseb252a(keEe)

2/e(a2

1 f 2)@1 and therefore the MPT and its variance are
same as that given in Eqs.~65! and ~67!, respectively.
1-9
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We use the same experimental data of Ref.@17# namely,
k51.253107 s21, F51.3233107 s21, A5106 s21, ke52
3106 s21, Ee51.2531022, and e50.004 s21 to compare
with the simulation results of the theory. In Fig. 7, we exhi
a single stochastic trajectory of the laser system in
(x

1
,x

2
) plane, which is a circular spiral. In the (y

1
,y

2
) plane,

the corresponding stochastic trajectory describes ‘‘loops’
shown in Fig. 8. According to Eq.~52!, the set of spiral or

FIG. 7. Linear dynamical evolution of a single stochastic traj
tory of Eq.~69! to reach the circle of radiusR250.02 in the case of
two variables.

FIG. 8. Linear dynamical evolution of a single stochastic traj
tory in they transformed space of Eq.~69! to reach the same circle
as in Fig. 7.
06110
t
e

s

‘‘loops’’ trajectories emerge from the origin of coordinates
reach the circle of radiusR at random directions because
rotating noise as given by Eq.~53!.

B. Rotating unstable systems of three variables

In the case of three variables, it is shown in Appendix
that any 333 antisymmetric matrixW8 can be reduced to a
333 antisymmetric matrixW very similar to that given in
the case of two variables. Therefore, given the matrixW8, it
can be reduced to a matrixW and its corresponding assoc
ated rotation matrix Re(t) according to

W5S 0 v 0

2v 0 0

0 0 0
D , Re~ t !5S cosvt sinvt 0

2sinvt cosvt 0

0 0 1
D ,

~71!
where now v25v

1

21v
2

21v
3

2. Similarly “3fs522v k̂.
Under these circumstances the dynamical evolution of o
one stochastic trajectory of the linear solution~52! to reach
the sphere~not shown! of radiusR, in the space of variables
(x

1
,x

2
,x

3
), is also a circular spiral but now growing alon

the x
3

axis as seen if Fig. 9. Also, the set of the stochas
trajectories leave the origin of coordinates at random dir
tions due to rotating noise. Seen along thex

3
axis, the spiral

trajectories are essentially the same as those described b
systems of two variables. In they representation a single
stochastic trajectory of the system to reach the sphere~not
shown! of radiusR is also quite similar to that of Fig. 8, bu
in the three-dimensional space (y

1
,y

2
,y

3
), as shown in Fig.

10. Due to this fact, we can assume that the compon
f e3

50 andj3(t)50 and therefore the mean value^h3(t)&
50. Accordingly, the MPT distribution and its variance a
the same as those given by Eqs.~65! and~67! respectively. In
Fig. 11, we show the excellent agreement between the th
retical results~65! and~67! and numerical simulations for th
systems of two and three variables, using the same value
the laser parameters. In that figure, the dashed lines co
spond to the behavior of the deterministic time scale~50! and
variance~jitter! ~51!, which clearly do not describe the osci
latory behavior of the laser system.

The detection bandwidth of the large injected signal c
be evaluated from Fig. 12. Several criteria are availa
@12,17#, and we choose that for which the limit of detectio

-

-

FIG. 9. Same as Fig. 7, but in three dimensions.
1-10
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on the detuning reduces the initiation time to one half of t
corresponding to the off state, i.e., the corresponding t
when the external signal goes to zero, which is obtained fr
Eq. ~47! with b50.

IV. THE MPT FOR NONLINEAR ROTATING UNSTABLE
SYSTEMS

To deal with nonlinear contributions in the time chara
terization of Eq.~1! the transformed space of coordinatesy,
as given by Eq.~18!, is the better description. This is becau
in this space of coordinates the rotational effects of the m

FIG. 10. Same as Fig. 8, but in three dimensions.

FIG. 11. ~a! Linear mean first time and~b! variance~jitter! as a
function of the rotation parameterv. The solid line corresponds to
~a! the iteration of Eq.~68! and to~b! the analytical result Eq.~67!;
open circles~filled circles! are the simulation results for the case
two ~three! variables. The dashed lines are~a! the deterministic time
scale~50! and ~b! the variance~jitter! ~51!.
06110
t
e
m

-
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trix W have been associated with the presence of both ex
nal and internal forces and then the nonlinear system
force must be derived from a potential. In this case, we
in general define the nonlinear deterministic dynamics of
unstable state in terms of the norm of the vectory, such that

ṙ[ f ~r !5
r ~r st2r !

C
0
1rg~r !

, ~72!

where C
0
5r st/2a with r st the steady-state value andg(r )

.0 is a polynomial. The functionf (r ) has two roots; one is
at r 50, which is the unstable state such thatf 8(r )ur 50.0;
the other root is atr 5r st , which corresponds to the stab
steady state and thusf 8(r )ur 5r st

,0. Equation~72! is com-
patible with the deterministic part of Eq.~18! according to
the explicit form of the scalar functionn(r ).

From Eq. ~72!, we can establish that the time scale
which the system reaches the reference valuer

R
5R2, from

the initial conditionr (0) is then

t5E
r (0)

R2 dr

f ~r !
. ~73!

According to the QD approach, this time scale is transform
in a random passage time if we assume the hypothesis
random initial condition, that isr (0)5h2, whereh is a ran-
dom variable. To characterize the rotation including the n
linear contribution of the system~18! through the MPT, we
propose the following:

^t&5
1

2aK lnF R2

h2~ t !G L 1C
NL

, ~74!

FIG. 12. Determination of the detection bandwidth as the f
width at half maximum of this plot. The solid line is the thir
iteration of Eq.~68!. The dashed line is the asymptotic value f
Ee50. It is one half of the switch-on timet0 given by Eq.~47!
when Ee50. In this caset510.7ms. The detection bandwidth is
'20.0 MHz.
1-11
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where the first term is the relevant contribution which com
from the linear characterization already studied in Sec.
and the second one, which takes into account the nonlin
contributions, must be calculated in the zero fluctuation lim
such thath250. Therefore, it is evaluated in the determin
tic limit of approximation with the following strategy:

C
NL

5E
0

R2S 1

f ~r !
2

1

2ar Ddr. ~75!

According to Eq.~72! the nonlinear contribution is then
constant given by

C
NL

5
1

2a
lnF 1

12k0
G1G~R2!2G~0!, ~76!

such thatR25k0r st , k0 being a constant andG(r ) is de-
fined as

E
0

R2 g~r !

r st2r
dr5G~R2!2G~0!, ~77!

which is clearly a type dependent function ofg(r ). So ac-
cording to the analysis of Sec. III, we can conclude that
mean passage time~74! will be given by

^t&5t
P
1

1

2a
lnF 1

12k0
G1G~R2!2G~0!, ~78!

where t
P

is the zeroth order approximation given as befo
by

t
P
5

1

2a
lnF R2

uh~ t
P
!u2G , ~79!

which is precisely the linear MPT given in Eq.~60!. We
show that the variance is also

^~Dt !2&5
Qg2~ t

P
!

a3 (
i

^hi~ t
P
!&

u^h~ t
P
!&u4

. ~80!

Again, the mean passage time is only dominated by the
terministic approximation, and the variance takes into
count the effects of both, the internal and external forces

For the same laser system given in Eq.~69!, we use the
nonlinear approximation

Ė5~F2k!E1 i f E2AuEu2E1keEe1j~ t !, ~81!

whereI st5(F2k)/A is the corresponding steady state valu
For the reference value of the intensity we chooseI

R
[R2

5k0I st50.1. In the transformed space of coordinatesy it
can be shown that the functionf (r )5 f (I )52aI(I st2I )/I st
and theng(r )5g(I )50 and therefore the functionG(r ) is
also zero. Thus, the mean passage time~78! for the system
~81! reduces to
06110
s
I,
ar

it

e

e-
-

.

^t&5t
P
1

1

2a
lnF 1

12k0
G , ~82!

where

t
P
5

1

2a
lnFR2~a21v2!

ke
2Ee

2 G2
1

2a
ln@11f~ t

P
!#, ~83!

and the variance reads the same as Eq.~67!. The time scale
~82! and its variance can be calculated through the sim
iterative procedure given in the preceding section.

A comparison with numerical simulation data is given
Fig. 13. For the MPT the agreement is excellent, corrobo
ing the way we have proposed to include the nonlinear c
tributions. For the variance the agreement becomes a bit
accurate for large values of the rotation parameter. This
havior steems from the fact that the variance is very sensi
to the nonlinear contributions of the dynamics of the syste

V. CONCLUDING REMARKS

The matrix scheme of QD approach, although formula
in two dynamical representationsx and y, has a better de-
scription in the transformed space of coordinatesy. The char-
acterization of the rotating Langevin-type dynamics in t
absence of external force has been studied in
n-dimensional case and leads to the same result for the M
and its variance as that obtained with the SFQD approa
This is because the dynamics~19! is very similar to that
given in the standard formulation, except for the rotation
internal noise. However the correlation function~12! is the

FIG. 13. ~a! Nonlinear mean first passage time and~b! variance
~jitter! as a function of the rotation parameterv. The solid line
corresponds to~a! the iteration of Eq.~83! and to~b! the analytical
result Eq.~67!, both for R250.1; filled circles are the simulation
results for the case of the laser system~81!.
1-12
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same in both, the standard and matrix scheme of the
approach, only in the Gaussian white noise case.

In presence of an external force, the QD matrix appro
has been made only in the case of two variables becaus
mathematical difficulties in then-dimensional case. The
theory is valid only if the parameterb<1 which is the re-
gion in which the dynamics is dominated by noise and
rotational effect can be appreciated. Therefore, the dynam
trajectories described by the system are practically stra
lines leaving from the origin of coordinates at random dire
tions to reach the circle of radiusR on the plane (y

1
,y

2
). In

this case the time scale~47! and the variance~48! are the
appropriate ones in the dynamical characterization of the
tem. If b@1 the rotational effect of the external force dom
nates over that of the internal noise rendering the appear
of rotations in forms of ‘‘loops’’ in the dynamical trajectorie
of the system. In this case noise plays no important role
therefore the trajectories are practically deterministic. In t
limiting case, the time scale~44! goes as the deterministi
time scale according to Eq.~50!, and the variance vanishes a
^(Dt)2&;1/b2. Nevertheless neither one is appropriate
the rotational characterization of the system, thus imply
that the QD approach is inadequate to study this case.

For the appropriate description of the rotating system,
other approach has been required and also formulated in
eral way in bothx andy dynamical representations for inte
mediate times. The rotation for systems of two and th
variables, has been characterized through the MPT~65! and
its variance~67!. These results are consistent with the Q
approach as time goes to infinity, i.e., the oscillatory beh
ior disappears for large times and must coincide respecti
with Eqs.~50! and~51! as expected. In the case of two va
ables, the theory has been applied to study the rotating
scription of the same laser system studied in Ref.@17#, where
the detection of large optical signals in that laser has b
studied through the MPT distribution, in terms of compl
numbers without resorting to a matrix description nor to
use of a transformed space of coordinatesy. In the case of
three variables, the rotating systems have a very similar
namical behavior as that of two variables, as shown in A
pendix B. Because of this fact, the time characterization
the variance for these systems are the same as Eqs.~65! and
~67! except for the rotation parameterv25v

1

21v
2

21v
3

2.
The theoretical description of this work has an excell
agreement with the simulation results. The criteria used
the detection bandwidth of the large injected signal in
laser system, according to the MPT, suggests a value of
proximately 20 MHz. Finally we have shown that, for th
time characterization of nonlinear rotating unstable syste
~1! the transformed space of coordinatesy ~18! is the better
theoretical scheme because in it the nonlinear system
force is derived from a potential. For intermediate times
nonlinear passage times are equal to the linear approxima
plus a constant which accounts for the nonlinear contri
tions. The study of the laser system given by Eq.~81! leads
to the time scale~82! and the variance~67!, both consistent
with the simulation results as corroborated in Fig. 13.
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APPENDIX A: THE ROTATION MATRIX

As a particular case let us first verify that the antisymm
ric matrix W of Eq. ~71! satisfies the relation eWt5Re(t). For
this purpose we define the rotation anglef5vt and the
matrices

Mz5S 0 2 i 0

i 0 0

0 0 0
D , A5 iMz5S 0 1 0

21 0 0

0 0 0
D ,

~A1!

such thatA is real and antisymmetrix and thereforeWt
5 ifMz . Using the property of the exponential we have

eWt5eifMz5I 1 ifMz1
~ ifMz!

2

2!
1

~ ifMz!
3

3!
1•••,

~A2!

whereI is the unity matrix. Collecting both the odd and eve
terms and taking into account that

Mz
2n5S5S 1 0 0

0 1 0

0 0 0
D , Mz

2n115Mz , ~A3!

where S is a symmetric matrix and iMz
2n115A, it can be

shown that Eq.~A2! reduces to

eWt5I 1~cosf21!S1sinfA, ~A4!

therefore

eWt5S cosvt sinvt 0

2sinvt cosvt 0

0 0 1
D . ~A5!

Equation ~A5! is an orthogonal rotation matrix becaus
Re(t)Re

T
(t)5I .

On the other hand, according to Ref.@21#, it is shown in
general that any 333 antisymmetric matrixW determines an
angular velocity vectorvW such thatW5vW 35vn3, where
n is an unitary vector along the rotation axis. In this case

eWt5eWt5e(f n3)5I 1(
j 51

`
~f n3 ! j

j !
. ~A6!

The series can be separated in odd and even powers suc
1-13



-
as

n

tio

,

hen
e a

agi-
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eWt5I 1(
j 51

`
~f n3 !2 j

~2 j !!
1(

j 50

`
~f n3 !2 j 11

~2 j 11!!
. ~A7!

Following Ref.@21# the above equation can be written as

eWt5I 1(
j 51

`
~21! jf2 j

~2 j !!
S1(

j 50

`
~21! jf2 j 11

~2 j 11!!
A, ~A8!

where S5I 2nnT and A5n3 are symmetric and antisym
metric matrices, respectively. It is now clear that the l
equation reads

eWt5I 1~cosf21!S1sinfA. ~A9!

In Ref. @22#, it has been shown that anyN3N antisym-
metric matrixW also satisfies that property

eWt5I 1 (
j 51

(N2C)/2

$~cosf j21!Sj1sinf jAj%, ~A10!

whereC is the number of real eigenvectors linearly indepe
dence with zero eigenvalue;Sj is symmetric andAj is anti-
symmetric.

APPENDIX B: TRANSFORMATION OF MATRIX W8

Given the antisymmetric matrix

W85S 0 2v
3

v
2

v
3 0 2v

1

2v
2

v
1 0 D , ~B1!

the transformation of this matrix to a matrixW very similar
to that of two variables, can be achieved through a rota
l
d

z

-

gli

06110
t

-

n

matrix R composed of unitary eigenvectors of matrixW8
@22#. The eigenvalues of matrixW8 are thenl150, l2
5 iv and l352 iv where v is such thatv25v

1

21v
2

2

1v
3

2. Their corresponding eigenvectors are, respectively

v
1
5S v

1

v
2

v
3

D , v
2
5S 2v

1
v

3
2 ivv

2

2v
2
v

3
1 ivv

1

v
1

21v
2

2 D , andv
3
5v

2
* ,

~B2!

where the asterisk stands for complex conjugate. It is t
noted that one eigenvector is real and the other two ar
complex conjugate pair.

The rotation matrixR is then

R5
1

Av
1

21v
2

2S 2v
1
v

3

v
2v

2

v
1
Av

1

21v
2

2

v

2v
2
v

3

v
v

1

v
2
Av

1

21v
2

2

v

v
1

21v
2

2

v
0

v
3
Av

1

21v
2

2

v

D ,

~B3!

where the first and second columns are the real and im
nary parts of the unitary vectorv̂

2
. So, the following trans-

formationRTW8R leads to

RTW8R5W5S 0 v 0

2v 0 0

0 0 0
D . ~B4!
s.

s.

un.

un.
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